SC94 # Standard Controller USERS' GUIDE ORDEL SC441 - Before using the device, please read the warnings below and this guide carefully. The accidents or damages resulting from not following the warnings included in this guide are under user's responsibility. - This device is intended to be used by qualified personnel in industrial environments, do not use in houselike environments. - Do not use the device at places where corrosive, flammable and explosive gases exist. Contact points may create electrical discharge and this may cause explosion or fire. - Do not allow metal fragments or lead wire scraps or liquid matters to fall inside this device. Otherwise fire or electrical shck may happen. - Take the neceessary precautions in order to prevent accidents and damages that may result in case the device gets faulty. - There is no fuse or switch that brings the device in power down state, these should be added to the system by the user. - Sensor and signalling cables should not be routed close to the power cables or inductive load cables. - Do not power up the device before the connections related with the device are performed in accordance with connection diagram. - Do not power up the device before the connections related with the device are performed in accordance with the connection diagram. While the device is powered, do not touch on the terminals. - Configuration settings at factory out should be changed according to the user's preferences. The accidents and damages resulting from incorrect configuration settings are under users' responsibility. - Never disassemble, repair and modify the device. These should be carried out by authorized service. ## **CONTENTS** | SECTION | Page: | |--|-------| | Safety Precautions | | | Contents | 3 | | Description of the Device | 4 | | Preparations | 5 | | Connection Diagram | 6 | | Product Code | 8 | | Technical Specifications | 9 | | Temperature Sensor Types | 10 | | Display and Key Functions | 11 | | Configuration | 13 | | Configuration Page Parameters | 15 | | Operator Page | 22 | | Operator Page Parameters | 23 | | Auto-Tune Operation | 24 | | Serial Communication · · · · · · · · · · · · · · · · · · · | · 25 | | Configuration Guide | 29 | Model SC441 devices are modular devices that have been designed to measure and control different types of processes variables and all modules can be configured seperately. Complying international standards, reliability and user friendly usage features are the design principles of these devices. So that, they are ergonomic devices that can be used easily in many different industrial sectors. - 1 Item 4 Digit Display - 6 Item Led Indicator - 1 Item Transmitter Supply Output (24Vdc) - 1 Item Universal Sensor Input (TC, RT, mA, mV, V) - 1 Item Analog Output (0/4-20mA, 0/2-10V) - 4 Item Relay or Logic Output (24V) - 1 Item RS485 Communication Unit - 100-240Vac Universal or 24Vac/dc Supply Voltage Isolation between Input/Output Modules Auto-Tuning (Automatic settings of PID parameters) Sensor Error Detection 9 Different Relay Functions ON/OFF, P, PI, PD, PID Controls Linear and Time Proportioning Control Output 100ms Sampling and Control Cycle Before using the device, please follow the instructions below according to the information in this guide. - Model SC94 devices are modular devices, so that before using the device, control supply voltage and input/output modules if they are appropriate or not by the help of product code - First of all, connect device to power supply and by using the configuration page, configure the device. - After configuring the device, adjust set and hysterisis values of the relays which are selected as alarm in operator page. - Power down the device and according to the connection diagram, apply other connections. - Prepare the system which will be controlled to be run and power up the system and the device. - If the control outputs of device will use PID and PID parameters are not entered manually, Run Auto-Tune in order to have the device to calculate these parameters automatically. - In order to be sure that PID parameters are correct, use a new set value for device and observe the operation. - Control all functions of the device by stepping through other operating modes. - Finally, in order to prevent the unauthorized people to observe the system, make the neccesary operation for security by entering the configuration page and return to the Process Screen. This user guide is prepared by following the instruction order above. How these operations are made are explained in detailed in related sections. Diagram-1 | Module | Explanation | |-------------|--| | S1 | Universal sensor input module (This sensor that is used to measure process value should be connected to the terminal which is identified with suitable symbols in this module). | | 01 | Analog Output Module (Content of this module is determined by product code and the function of this module is determined by "a UF" parameter that can be accessed from configuration page). | | R1,R2,R3,R4 | Relay Output Modules (Content of this module is determined by product code and the function of this module is determined by "r tF, r2F, r3F, r4F parameters that can be accessed from configuration page). | | PS | Supply voltage input (Supply voltage is determined by product code). | | LU | Rs485 Communication Module | Current Input (mA) Analog Output * RS-485 Communication Module * RT Input (3 Wire) RT Input (2 wire) ΠRT S1 Voltage Input (V) Transmitter Supply (24Vdc/30mA) Relay Outputs * Power Supply * * These are optional. Please look to device sticker. 2 = 24V Logic Output (To drive SSR) ## **TECHNICAL SPECIFICATIONS** | Supply Voltage (PS) | 100-240Vac/dc: +%10 -%15 | | | : +%10 -%20 | | |--------------------------------|--|-------------|----------------------------|-----------------------------|--| | Power Consumption | 6W,10VA | | | | | | | Thermocouple : B,E,J,K,L,N,R,S,T,U | | | | | | | Two Wire Transmitte | er : 4-20mA | | | | | Universal Sensor Input (S1) | Resistance Thermor | neter : PT1 | 00 | | | | | Current: 0/4-20mA | | | | | | | Voltage: 0-50mV, 0/ | 2-10V | | | | | Transmitter Supply (TX) | 24Vdc (Isc = 30mA |) | | | | | | Thermocouple, mV: | 10MΩ | | | | | Analog Input Impedances | Current : 10Ω | | | | | | | Voltage : $1M\Omega$ | | | | | | Analog Output (O1) | Current : 0/4-20mA (| (RL ≤ | Voltage : | $0/2-10V (RL \ge 1M\Omega)$ | | | Relay Outputs (R1,R2) | Contact: 250Vac, 5/ | 4 | Logic Output : 24Vdc, 20mA | | | | Contact Lifetime | Without Load: 10.000.000 switching | | | | | | Contact Lifetime | With 250V, 3A Resistive Load : 100.000 switching | | | | | | Memory | 100 years, 100.000 | renewals | | | | | Accuracy | +/- %0.2 | | | | | | Sampling Period | 100ms | | | | | | Environment Temperature | Operation : -10+55C Storage : -20+65C | | | -20+65C | | | Protection | Front Panel : IP54 Trunk : IP20 | | | 20 | | | Dimensions | Width: 96mm | Height: 4 | 8mm | Depth: 110mm | | | Panel cut-out Dimensions | 92+/-0,5 mm x 45+/- | 0,5 mm | | | | | Weight | 320gr | | | | | | Sensor Type | Standard | Temperature Range | | | | |--------------------------------|----------|-------------------|------------|--|--| | Sensor Type | Standard | (°C) | (°F) | | | | Type-B Thermocouple (Pt%18Rh- | IEC584-1 | 60, 1820 | 140, 3308 | | | | Type-E Thermocouple (Cr-Const) | IEC584-1 | -200, 840 | -328, 1544 | | | | Type-J Thermocouple (Fe-Const) | IEC584-1 | -200, 1120 | -328, 1562 | | | | Type-K Thermocouple (NiCr-Ni) | IEC584-1 | -200, 1360 | -328, 2480 | | | | Type-L Thermocouple (Fe-Const) | DIN43710 | -200, 900 | -328, 1652 | | | | Type-N Thermocouple (Nicrosil- | IEC584-1 | -200, 1300 | -328, 2372 | | | | Type-R Thermocouple (Pt%13Rh- | IEC584-1 | -40, 1760 | 104, 3200 | | | | Type-S Thermocouple (Pt%10Rh- | IEC584-1 | -40, 1760 | 104, 3200 | | | | Type-T Thermocouple (Cu-Const) | IEC584-1 | -200, 400 | -328, 752 | | | | Type-U Thermocouple (Cu-Const) | DIN43710 | -200, 600 | -328, 1112 | | | | Pt-100 Resisance Thermometer | IEC751 | -200, 840 | -328, 1544 | | | #### PROCESS-SCREEN: Just after powering up the device, after showing program version for 2 seconds, "PV" display shows measured process value or error message and "ST" display shows the most used parameter depending to operation mode. This screen is called **Process-Screen**. During normal operations, this screen is used. | 1 | PV DISPLAY | Process value or error messages are shown in Process-Screen, other screens show the parameter name. | |---|------------|---| | 2 | R1 LED | It indicates when "R1" relay is powered up. | | 3 | R2 LED | It indicates when "R2" relay is powered up. | | 4 | R3 LED | It indicates when "R3" relay is powered up. | | 5 | R4 LED | It indicates when "R4" relay is powered up. | | 6 | SC LED | İt shows SC94 device. | | | SYMBOLISATION OF ALPHABETICAL CHARACTERS | | | | | | | | | | | | |---|--|---|---|---|---|---|---|---|----------|---|-----|---| | Α | В | С | D | Е | F | G | Н | I | J | K | L | М | | R | Ь | | d | E | F | L | H | ī | ∐ | ۲ | L | ñ | | N | 0 | Р | Q | R | S | Т | U | V | W | Х | Υ | Z | | | | | | | , | | | | u | | 1.1 | _ | | ERROR MESSAGES | | | | | | |----------------|--|--|--|--|--| | Err.1 | Sensor connection is broken at "S1" input. | | | | | | | Process value is above the display scale. | | | | | | | Process value is below the display scale. | | | | | | | KEY FUNCTIONS | |----------|--| | * | If it is pressed shortly, first page is activated. Pressing for 2 seconds will activate the Process-Screen. | | ≈ | It is used to change the parameter option or parameter value. | | * | It is used to change the parameter option or parameter value. | | Q | In any page, pressing for a while activates the next parameter. While in Process-Screen, pressing for 5 seconds will start the Auto-Tune operation. For submit operations, it must be pressed for 2 seconds. | SC94 series include control devices that are designed for multi-purpose usage. So that they can be used in any environments that have appropriate input/output modules. These devices may work with different types of sensors and input signals and may control all outputs seperately. So that, before using SC441 device, input/output types and functions, control types and usage preferences should be determined carefully. According to the product code, SC441 series devices may have 1 analog input, 1 analog output and 2 relay output modules. Module types, functions and scales are determined with parameters which can be accessed in configuration page. Furthermore, common parameters that determines the control type and operating mode, also neccesary setting for control algorithm may be accessed in configuration page. Before using an unconfigurated device, firstly power on the device and make configuration by following the instructions below: #### Entering the configuration page and setting up parameters: - ♦ In order to enter the configuration page, press "☒" and "☒" keys simultaneously and continuously until "ఓ²" message appears in "PV" display when device is energized. - ◆ Set the security code by pressing "≦" and "둘" keys by setting the value of "SP" display to configuration page security code when "£.2" message still appears in PV display (Default factory setting of this security code is "Д"). - If the security code is not valid when you have pressed "o" key, Process-Screen is to be reverted, otherwise first parameter of the configuration page is accessed. - In parameter display, parameter name is displayed in "PV" display, preferences of the parameter setting is displayed in "SP" display. - ◆ Now, you can access other configuration parameters in order by pressing "□" key . - ♦ In order to change preferences of parameter setting, use "≦" and "둘" keys, in order to step to the next parameter use "⊡" key. A short time press of "∑" key makes you to access the start of page, a log time press makes you to return the Process-Screen. - ♦ Below, you can find a graphical representation of these instructions in **Figure-3**. Figure-3 Detailed information about configuration page parameters can be found in the next section. Par. 01— F5 In order to restore the settings to the factory default, this parameter should be set to " $\alpha \alpha$ " and " \bigcirc " key should be pressed for two seconds. Setting Preferences: oFF, on Par. 02— dP It determines the decimal level (number of digits after dot) of all parameters which have a unit of "EU". Setting Range : 0 - 3 **Warning:** When this parameter has been changed, all parameters which have a unit of "EU" should be set again. **Note: "EU"**, which is determined by "Hu" parameter is a temperature unit for thermocouple or resistance thermometer measurements Otherwise, it is an engineering unit that represents the measured variable. Par. 03—5 (£ £ [-] "S1" determines the sensor type which is connected to the universal sensor input. This sensor is used to measure the process value. Setting Preferences: Table-1 | Table-1 | No | Sensor Type | |---------|-----|--------------------------------------| | EE-P | 0 | Type-B Thermocouple (Pt%18Rh-Pt) | | FC-E | 1 | Type-E Thermocouple (Cr-Const) | | | · · | , , , | | F[-1 | 2 | Type-J Thermocouple (Fe-Const) | | F[-h | 3 | Type-K Thermocouple (NiCr-Ni) | | FC-F | 4 | Type-L Thermocouple (Fe-Const) | | £[-n | 5 | Type-N Thermocouple (Nicrosil-Nisil) | | £[-r | 6 | Type-R Thermocouple (Pt%13Rh-Pt) | | £[-5 | 7 | Type-S Thermocouple (Pt%10Rh-Pt) | | FC-F | 8 | Type-T Thermocouple (Cu-Const) | | FC-N | 9 | Type-U Thermocouple (Cu-Const) | | rŁ | 10 | Pt-100 Resistance Thermometer | | 0-50 | 11 | 0-50mV | | 0-20 | 12 | 0-20mA | | 4-20 | 13 | 4-20mA | | 0- 10 | 14 | 0-10V | | 2- 10 | 15 | 2-10V | | Par. 04—5 {LL | It determines the lower scale value of "S1" universal sensor input | | |--|---|-----------------| | 8.8 | Setting Range : 199.9 - 999.9 | Unit : EU | | Par. 05—5 (HL | It determines the higher scale value of "S1" universal senso | r input module. | | 844.4 | Setting Range : +199.9 - 999.9 | Unit : EU | | Par. 06—5 (6) | It determines the value which scala will be set to when sensor input connection is broken. | the universal | | H | Setting Preferences : L (Low value) , H (High value |) | | Par. 07—HU | It determines the temperature unit for the measurements of or resistance thermometers. | thermocouples | | - °E | Setting Preferences : "[(°C), "F (°F) | | | Par. 08— <u>- </u> <u>- </u> <u>- </u> <u>- </u> | While measuring with thermocouples or resistance thermotocorrect measurement errors, it is added to measured value | | | 8.8 | Setting Range : +00.0 - 100.0 | Unit : EU | | Par. 09—FEE | It determines the time constant of digital filter that is applied to an value is increased, reading stability increases but reading speed dea | | | 111 | Setting Range : 0.0 - 10.0 | Unit : sec | | Par. 10 15 | "O1" determines Analog output function. | | | off | Setting Preferences : Table-4 | | | Tablo-4 | No | Analog Output Functions | |---------|----|--| | oFF | 0 | No | | PCo | 1 | Pozitif direction of PID control output. | Par. 11— o (£ 4- 20 It determines the type of "O1" analog output module. Setting Preferences: Table-5 | Table-5 | No | Analog Output Type | |---------|----|--------------------| | 0-20 | 0 | 0-20mA | | 20-0 | 1 | 20-0mA | | 4-20 | 2 | 4-20mA | | 20-4 | 3 | 20-4mA | | 0- 10 | 4 | 0-10V | | 10-0 | 5 | 10-0V | | 2- 10 | 6 | 2-10V | | 10-2 | 7 | 10-2V | **Note:** In order to be able to use the first four preferences, this module should be identified as being "0/4-20mA" in product code. As for the last four preferences, "0/2-10V" should be used as identifying code. Par. 12— r (F PE o It determines the function of "R1" relay output module. Setting Preferences: Table-6 | Table-6 | No | Relay Function | | | | | | |---------|----|------------------------|--------|-------|-------|----|--| | oFF | 0 | N/A | | | | | | | ULC | 1 | Upper Limit
Control | | 1 0 0 | ⊅EŁ.n | PV | | | LLE | 2 | Lower Limit
Control | ALARMS | 1 0 0 | 5EŁ.n | PV | | | ULR | 3 | Upper Limit
Alarm | RMS | 1 0 0 | 5EŁ.n | PV | | | LLR | 4 | Lower Limit
Alarm | | 1 0 0 | 5EŁ.n | PV | | Note: Hatched areas are hysterisis areas and hysterisis of each relay is determined with its "אנ" parameter. ("N" represents the relay number) "1" in table means that related relay is powered on and "0" means powered off | CONFIGURATION PAGE PARAMETERS 20 | | | | | | | |----------------------------------|---|----------------|--|--|--|--| | Par. 27— REP | It allows the control periode is calculated automatically operation. | by Auto-Tune | | | | | | חם | Setting Preferences: oFF(No), on(Yes) | | | | | | | Par. 28— RESP | determines this set value. | | | | | | | off | Setting Range : oFF(Closed) , +199.9 - 999.9 | Unit : EU | | | | | | Par. 29— REHr | Hysterisis value for Auto-Tune operation. It shoud be set to 5-20 times of system instability. | | | | | | | 2.8 | Setting Range : 0.1 - 100.0 | Unit : EU | | | | | | Par. 30—Rddr | It determines the serial communication address. All addre unique that are connected to a serial communication line. | sses should be | | | | | | | Setting Range: oFF(Closed), 1-255 | Birim : EU | | | | | | Par. 31— 6866 | It determines the serial connection speed. | | | | | | | 9.5 | Setting Preferences: 9.5, 19.2, 38.4 | Birim : Kbps | | | | | | Par. 32— Pr 上 5 | It determines the parity type in serial communication. | | | | | | | Eun | Setting Preferences: nanE(None), add(Odd), Eun(Even) | | | | | | | Par. 33— [5/25] | Permission for changing the control set value by the operator. | | | | | | | on | Setting Preferences: aFF(Off), an(On) | | | | | | | Par. 34— 85.85 | Permission for changing the "5EŁn" set value that belongs to relays. | | | | | | | 00 | Setting Preferences: aFF(Off), an(On) | | | | | | | Par. 35— H555 | Permission for changing the hysterisis ("אַלב") value by th | ne operator. | | | | | | 00 | Setting Preferences: aFF(Off), an(On) | | | | | | | Par. 36— 月上 | Permission for starting the Auto-Tune operation. | | | | | | | ٥٥ | Setting Preferences: aFF(Off), an(On) | | | | | | | Par. 37— [o P | It determines the "LoL" parameter is shown or not which represent pID control output level in operator page. | | | | | | |-----------------------|--|-----------|--|--|--|--| | oFF | Setting Preferences: aFF(Off), an(On) | | | | | | | Par. 38— Ar Ł | While in operator parameters, it determines the automatic return time to Process-Screen. | | | | | | | 10 | Setting Range : oFF(Off), 1-25 | Unit: sec | | | | | | Par. 39— 5 <i>E.2</i> | It determines the security code for Configuration page. | | | | | | | | Setting Range : 1999 - 9999 | | | | | | Existing configuration determines which parameters will be used in operator page and only neccesary parameters are displayed. These parameters which are determined in configuration are used in normal operation conditions. So, While in Process Screen, by pressing key "a" key, user can access these parameters in any time and by pressing the "s" key, user returns to Process-Screen again. Setting permission of the changeable parameters can be set with the related parameters in configuration page. While in any parameter in operator page, if user does not press any key, Process-Level is to be returned after the time which is determined by "Ar L" parameter, pass. Detailed information about operator page parameters can be found in the next section. Unit: EU | CoL | It displays the level of PID control output. In order to make visible, "£oP" parameter which is in configuration page sho | | | | | |-----------------|--|-------------------------------|--|--|--| | 0.0 | as being "an". | Unit:% | | | | | 5EE. 1 | It determines the set value of "R1" module. In order to make visible, "r &F" parameter should be selected as ALARM. | this parameter | | | | | 0.0 | Setting Range : [5PLL] - [5PHL] | Unit : EU | | | | | 5EE.2 | It determines the set value of "R2" module. In order to make visible, "r2F" parameter should be selected as ALARM. | this parameter | | | | | 0.0 | Setting Range : [5PLL] - [5PHL] | Unit : EU | | | | | 588.3 | It determines the set value of "R3" module. In order to make visible, "r 3F" parameter should be selected as ALARM. | e this parameter | | | | | 8.8 | Setting Range : [5PLL] - [5PHL] | Unit : EU | | | | | 5EE.4 | It determines the set value of "R4" module. In order to make this parameter visible, "r 4.F" parameter should be selected as ALARM. | | | | | | 0.0 | Setting Range : [5PLL] - [5PHL] | Unit : EU | | | | | HY5 | It determines the control hysterisis value. In order to make this parameter visible, one of the proportional band should be selected as being "oFF". | | | | | | □ II. I | Setting Range : D. I - IDD.D | Unit : EU | | | | | H35. 1 | It determines the hysterisis value of "R1" module. In ord parameter visible, "r "b" parameter should be selected as | ler to make this being ALARM. | | | | | □ II. I | Setting Range : LEC(Locked) , 0.1 - 100.0 | Unit : EU | | | | | HY5.2 | It determines the hysterisis value of "R2" module. In ord parameter visible, "r 2F" parameter should be selected as | | | | | | <u>∷.</u> ; | Setting Range : 0.1 - 100.0 | Unit : EU | | | | | HY5.3 | It determines the hysterisis value of "R3" module. In ord parameter visible, "r 3F" parameter should be selected as | | | | | | - <u>::</u> ::: | Setting Range : 0. I - IDO.0 | Unit : EU | | | | | H45.4 | It determines the hysterisis value of "R4" module. In ord parameter visible, "r 4F" parameter should be selected as I | | | | | Setting Range : 0. I - 100.0 While configuring model SC94 devices, if PID parameters (PoPb, noPb, LE, dE, LP) are default factory parameters, control outputs operate in ON/OFF mode. In order to begin operating with PID parameters, these parameters should be determined manually or Auto-Tune operation should be done. Because every process has different characteristics, PID parameters should be different too. Auto-Tune operation calculates the optimum PID parameters and saves them. Before starting to operate Auto-Tune operation, " $R \succeq P$ " and " $R \succeq P$ " parameters should be set and " $R \succeq$ " parameter should be " $a \land n$ ". If " $R \succeq P$ " parameter is " $a \not F F$ ", Auto-Tune operates by using the set value at that time. In order to get the optimum PID parameters, selected set value should be at about the middle of process' whole power. After having appropriate settings, while in Process-Screen, press the "¬" key for 5 seconds to start the Auto-Tune operation then "¬¬" message flashes in "ST" display. In order to have correct results, nobody should interfere with the system. While in Auto-Tune operation, the device calculates and saves new PID parameters after doing ON/OFF control for 2 or 3 oscillations with the determined set value and hysterisis. After finishing the Auto-Tune operation, "¬¬¬E" message in display disappears and the device begins to control the system (process) using the new PID parameters. After finishing the Auto-Tune operation, "¬¬E" parameter in configuration page should be changed to "¬¬FF" state again. While in the Auto-Tune state.pressing the "¬¬E" key cancels the operation. If user wants a device to operate in ON/OFF mode instead of PID, PID parameters should be set to default factory output. This devices are designed to be communicated in slave mode with MODBUS RTU protocol. All parameters and registers can be accessed with this communication type. Parameters can be read or can be set to a value. Serial communication is established with Half-Dublex RS485 line. 32 devices can be connected to one RS485 line. The cable which is used in communication line should be a data cable that is compatible with Half-Dublex RS485 communication and this cable should be connected parallel to all devices as a single line. Both cable ends should be terminated with a appropriate resistance. A communication line which is appropriate for 9600 Bps data tranmission speed can be up to 1000m. Each device on serial communication line should have an unique address between 1 and 255 but all devices in this line should have same speed and parity type. Communication address, speed and parity type of these devices are determined with " Rddr, bRUd ve Prty" parameters which are in configuration page. Below, you can find information about functions which are supported by MODBUS RTU, parameter addresses and others in tables. #### Supported Standard MODBUS RTU Functions: Function 01 = Read Coils Function 03 = Read Holding Registers Function 05 = Write Single Coil Function 06 = Write Single Register Function 16 = Write Multiple Registers BIT Type Parameters (COILS) | Address | Explanation (1 / 0) | Set Perm. | |---------|--------------------------------|-----------| | 0 | Auto-Tune (ON / OFF) | | | 1 | "R1" relay module (ON / OFF) | | | 2 | "R2" relay module (ON / OFF) | | | 3 | "R3" relay module (ON / OFF) | | | 4 | "R4" relay module (ON / OFF) | | | 5 | ERR1 Error (Yes / No) | No | | 6 | ERR2 Error (Yes / No) | No | | 7 | ERR3 Error (Yes / No) | No | | 8 | General Error (Yes / No) | No | ### REGISTER Type Parameters (REGISTERS) | Adres | Explanation | Setting | Range | Mul. | Unit | Set Perm. | |-------|---------------------------------------|---------|-------|-------|------|-----------| | 0 | Valid decimal point | 0 | 3 | 1 | | No | | 1 | Measured process value | -1999 | 9999 | 10^DP | EU | No | | 2 | Control set value | -1999 | 9999 | 10^DP | EU | | | 3 | PID control output level | -1000 | 1000 | 10 | % | | | 4 | Operating mode | 0 | 2 | 1 | | | | 5 | Measured process value from 1. sensor | -1999 | 9999 | 10^DP | EU | No | | 6 | Measured process value from 2. sensor | -1999 | 9999 | 10^DP | EU | No | | 7 | Measured process value from 3. sensor | -1999 | 9999 | 10^DP | EU | No | | 8 | Instantaneous set value | -1999 | 9999 | 10^DP | EU | No | | 9 | Valve movement direction | 0 | 2 | 1 | | No | | 10 | Valve location | 0 | 1000 | 10 | % | No | | Addr. | Explanation | Setting | Range | Mul. | Unit. | Set Perm. | |-------|---------------------------------|---------|-------|-------|-------|-----------| | 20 | 1.Optional set point | -1999 | 9999 | 10^DP | EU | | | 21 | 2.Optional set point | -1999 | 9999 | 10^DP | EU | | | 22 | 3.Optional set point | -1999 | 9999 | 10^DP | EU | | | 23 | 4.Optional set point | -1999 | 9999 | 10^DP | EU | | | 24 | 5.Optional set point | -1999 | 9999 | 10^DP | EU | | | 25 | 6.Optional set point | -1999 | 9999 | 10^DP | EU | | | 26 | 7.Optional set point | -1999 | 9999 | 10^DP | EU | | | 27 | 8.Optional set point | -1999 | 9999 | 10^DP | EU | | | 28 | Set value of "R1" module | -1999 | 9999 | 10^DP | EU | | | 29 | Set value of "R2" module | -1999 | 9999 | 10^DP | EU | | | 30 | Set value of "R3" module | -1999 | 9999 | 10^DP | EU | | | 31 | Set value of "R4" module | -1999 | 9999 | 10^DP | EU | | | 32 | Control hysterisis value | 1 | 1000 | 10^DP | EU | | | 33 | Hysterisis value of "R1" module | 0 | 1000 | 10^DP | EU | | | 34 | Hysterisis value of "R2" module | 0 | 1000 | 10^DP | EU | | | 35 | Hysterisis value of "R3" module | 0 | 1000 | 10^DP | EU | | | 36 | Hysterisis value of "R4" module | 0 | 1000 | 10^DP | EU | | Not: Please contact to producer firm for the communication information about other parameters Before start to use the device, be sure these steps are done. - Be sure that 5 L parameter is chosen suitable with the sensor type you want to use. (S1 Universal sensor input is in the page 15 table - 1) - Be sure 5 LLL parameter is set to lowest value by sensor scale of S1 - Be sure 5 LHL parameter is set to highest value by sensor scale of S1 - Be sure r IF, r 2F, r 3F, r 4F parameters are chosen suitable with the function of relay. (Relay output number is optional. It can be change by device model. Relay function table is in the page 19 and 20 table - 6) - Be sure a tF parameter is set to suitable function of analog output you want to use. (Analog output number is optional. It can be change by device model. Analog output functions table is in the page 18 table - 4) - Be sure a !L parameter is chosen suitable with the current/voltage output type shown on the device label (Analog output number is optional. It can be change by device model. Analog output type table is in the page 18 table - 5) - Be sure a LL parameter is set to lowest value of analog output scale you want to use. (Analog output number is optional. It can be change by device model) #### To make PID Controll; - If you want to use Relay Output Module, be sure: - r tF,r 2F,r 2F,r 4F parameters (the ones you want use in PID control) should set to suitable functions between P E a, P a F a F a F a F a F a options that choosen from relay functions table - If you want to use Analog Output Module, be sure: - a t parameter is set to proper function between PEa, a options that choosen from analog output function table. To make PID controll with your device, you can enter parameters manually or automatically. If you know the characterise of system, you can enter manually these parameters: Proportional band value of positive PID control output PaPb, Proportional band value of negative PID control output ρaPb, Integral time constant ΔŁ, Differential time constant ΔŁ, and Control period sampling time ΣP. You can start Auto-Tune function and device will calculate PID controll parameters automatically. #### To start Auto-Tune process ; - ●Enter temperature value of process set point to RŁ♭P parameter. This value should be around mid points of process' full power . - •Enter hysteresis value of process set point to REHr parameter. This value arranges the sesitivity of Auto-Tune process. - ●Set RŁ parameter n . When the device main screen, press "or" button for 5 seconds. While Auto-Tune operation is working, device display shows blinking RE. This expression fades away when the Auto-Tune process is finished. To cancel the Auto-Tune operation, press "*" button while operation is running. # www.ordel.com.tr ORDEL Ltd. Şti. 6.Cad. No:13/4 Aşağı Öveçler/ANKARA Tel:+90 312 481 86 89 (PBX) Fax: +90 312 481 60 68