

Advanced Step Control Device

PC991

Device Features

2 pcs 4 Digit and 1 Item 3 Digit LED Display

6 pcs LED Indicator

1 pcs Transmitter Supply Output (24VDC)

1 pcs Universal Sensor Input (TC, RT, mA, mV, V)

1 pcs Auxiliary Analog Input (0/4-20mA)

1 pcs Potentiometer Input

2 pcs Numeric Input (15V)

1 pcs Analog Output (0/4-20mA.0/2-10V)

1 pcs RS485 Communication Unit

4 pcs Relay or Logic Output (24V)

100-240V AC/DC Universal or 24V AC/DC Supply Voltage Isolation Between Input/Output modules

800 Step, 100 Program Step Controls Possibility of Relay Positioning on Steps

7 Different Power-Cut Behaivors

Control according to Two Input Difference

Proportional Valve Control With Position Feedback

Proportional Valve Control Without Feedback

PID Heating/Cooling

Auto-Tuning (Automatic settings of PID parameters)

Programed/Automatic/Manual Working Modes

Bumpless Transfer Ability

Sensor Error Detection

Remote Set Point

4 Item Optional Setpoint

Ramp Function

Retransmission(For process and Set Value)

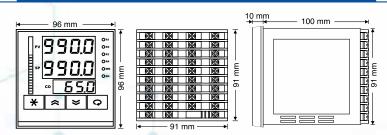
18 Different Relay Functions

ON/OFF, P, PI, PD, PID Controls

Linear and Time Proportioning Control Output

100ms Sampling and Control Cycle

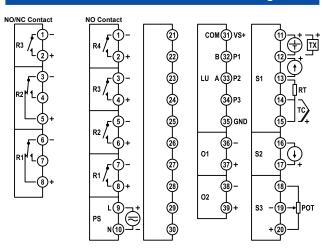
Standard MODBUS RTU Communication Protocol


Master-Slave and Cascade Control Applications

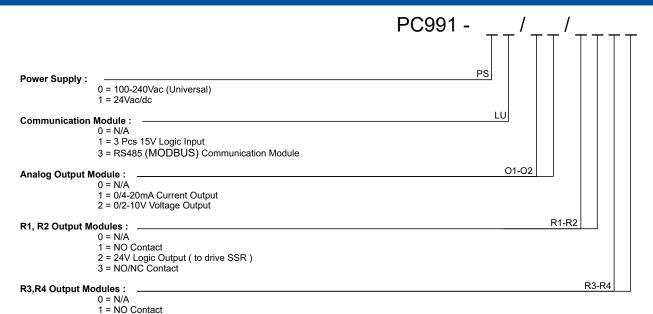
Configuration via Computer

PC991 devices are 96 x 96 mm in size. They are designed to measure the temperature, pressure, speed, level, humidity, current, voltage, resistance and other physical units, as well as the on / off and PID control of many process variables in industrial environments. They are completely modular and each module can be configured individually. It is used in Food, Plastic, Iron Steel, Chemistry, Metallurgy, Cement, Ceramic, Petro-Chemistry, Refineries, Glass and other industries. They are ergonomic devices whose compliance with international standards, reliability and ease of use have been ensured at the design stage.

Input Types			
Sensor Type	Standard	Min.	Max.
Type-T (Cu-Const)	IEC60584	-200 °C	300 °C
Type-U (Cu-Const)	IEC60584	-200 °C	600 °C
Type-J (Fe-Const)	IEC60584	-200 °C	800 °C
Type-L (Fe-Const)	IEC60584	-200 °C	900 °C
Type-K (NiCr-Ni)	IEC60584	-200 °C	1200 °C
Type-E (Cr-Const)	IEC60584	-200 °C	1200 °C
Type-N (Nicrosil-Nisil)	IEC60584	0 °C	1200 °C
Type-S (Pt%10Rh-Pt)	IEC60584	0 °C	1500 °C
Type-R (Pt%13Rh-Pt)	IEC60584	0°C	1600 °C
Type-B (Pt%18Rh-Pt)	IEC60584	0°C	1800 °C
Pt-100	DIN 43760	-200 °C	850 °C
0 / 4-20 mA		0 mA	20 mA
0 / 2-10 VDC		0 VDC	10 VDC


Device Dimensions

Panel Cutting Dimensions = 92 ± 0,5 mm x 92 ± 0,5 mm


Technical Specifications 100-240 Vac/dc +10%-15% Power Supply (PS) 24 Vac/dc +10%-20% **Power Consumption** 6W. 10VA Thermocouple = B ,E, J, K, L, N, R, S, T, U Two Wired Transmitter = 4-20mA Universal Sensor Input Resistance Thermometer = Pt-100 (S1) Current = 0/4-20mA Voltage = 0-5mV, 0/2-10V **Auxiliary Analog Input** 0/4-20mA (S2)Potentiometer Input $100-1500\Omega$ **(S3)** Transmitter Supply (TX) 24Vdc (Isc= 30mA) Thermocouple, mV = $10M\Omega$ **Analog Input Impedance** Current = 10Ω Voltage = 1MΩ Current = 0/4-20mA (RL≥500Ω) Analog Output (O1,O2) Voltage = 0/2-10V ($RL \ge 1M\Omega$) = 250VAC 10A **Relay Output** Contact (R1,R2,R3,R4) Logic Output = 24Vdc 20mA No Load = 10.000.000 Switching **Contact Lifetime** 250V,10A Resistive Load = 1.000.000 Switching 100 Years, 100.000 Renewals Memory **Accuracy** +/- 0.2% 100 ms Sampling Time Working = -10...+55°C **Environment Temperature** Storage = -20...+65°C Front Panel = IP54 **Protection Class** Trunk = IP20 Width = 96 mm Height = 96 mm **Dimensions** Depth = 110 mm **Panel Cutting Dimensions** 92 +/- 0,5 mm x 92 +/- 0,5 mm Weight 430 gr

Modular Structure and Connection Diagram

Module	Description	
\$ 1	Universal sensor input module (the sensor used to measure process value should be connected to the terminals with appropriate symbol on this module).	
S2	0/4-20mA auxiliary analog input or analog output module.*	
S 3	$100\text{-}15000\Omega$ potentiometer input (The function of this module can be selected over the device).	
LU	RS485 MODBUS RTU or Logic Input Module	
01,02	Analog outputs (The content of this module is determined by the product code, function is selected from the configuration page).	
R1,R2,R3,R4	Relay output modules (The content of this module is determined be the product code, function is selected from the configuration page)	
PS	Supply voltage input (Supply voltage is determined by product code).	

Product Code

Note: If R1 relay is coded as 3 (NO / NC), and relay R2 is selected as contact, it must be coded as NO / NC.

If the R2 relay is coded as 3 (NO / NC), and the R1 relay is selected as a contact, it must be coded as NO / NC.

If R1, R2 module is selected as 3, then R4 module must be coded as 0.

2 = 24V Logic Output (to drive SSR)